X iv : m at h - ph / 0 30 70 08 v 1 2 J ul 2 00 3 IRREDUCIBLE REPRESENTATIONS OF CAYLEY – KLEIN ORTHOGONAL ALGEBRAS

نویسنده

  • N. A. Gromov
چکیده

Multidimensional contractions of irreducible representations of the Cayley–Klein orthogonal algebras in Gel'fand–Zetlin basis are considered. Contracted over different parameters, algebras can turn out to be iso-morphic. In this case method of transitions describes the same reducible representations in different basises, say discrete and continuons ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 30 70 05 v 1 2 J ul 2 00 3 INDUCED REPRESENTATIONS OF CAYLEY – KLEIN ORTHOGONAL GROUPS

Using method of inducing, irreducible unitary representation of Cay-ley–Klein orthogonal groups were constructed. There was proved that Kirilov's method of orbits is relevant for study of the behavior of irre-ducible representations under transitions between Cayley–Klein groups.

متن کامل

ar X iv : m at h - ph / 0 30 70 15 v 1 8 J ul 2 00 3 Integrable geodesic flows on Riemannian manifolds : Construction and Obstructions ∗ Alexey

This paper is a review of recent and classical results on integrable geodesic flows on Riemannian manifolds and topological obstructions to integrability. We also discuss some open problems.

متن کامل

ar X iv : m at h / 03 05 30 9 v 1 [ m at h . Q A ] 2 2 M ay 2 00 3 Representations of cross product algebras of Podles ’ quantum spheres

Hilbert space representations of the cross product ∗-algebras of the Hopf ∗-algebra Uq(su2) and its module ∗-algebras O(Sqr) of Podles’ spheres are investigated and classified by describing the action of generators. The representations are analyzed within two approaches. It is shown that the Hopf ∗-algebra O(SUq(2)) of the quantum group SUq(2) decomposes into an orthogonal sum of projective Hop...

متن کامل

ar X iv : m at h / 03 05 30 9 v 3 [ m at h . Q A ] 2 3 Ju l 2 00 7 Representations of cross product algebras of Podleś quantum spheres

Hilbert space representations of the cross product ∗-algebras of the Hopf ∗-algebra Uq(su2) and its module ∗-algebras O(Sqr) of Podleś spheres are investigated and classified by describing the action of generators. The representations are analyzed within two approaches. It is shown that the Hopf ∗-algebra O(SUq(2)) of the quantum group SUq(2) decomposes into an orthogonal sum of projective Hopf...

متن کامل

ar X iv : m at h / 04 07 08 6 v 1 [ m at h . G T ] 6 J ul 2 00 4 REPRESENTATIONS OF THE QUANTUM TEICHMÜLLER SPACE AND INVARIANTS OF SURFACE DIFFEOMORPHISMS

— We investigate the representation theory of the polynomial core T S of the quantum Teichmüller space of a punctured surface S. This is a purely algebraic object, closely related to the combinatorics of the simplicial complex of ideal cell decompositions of S. Our main result is that irreducible finite-dimensional representations of T S are classified, up to finitely many choices, by group hom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003